Wnt4/5a signalling coordinates cell adhesion and entry into meiosis during presumptive ovarian follicle development.

نویسندگان

  • Florence Naillat
  • Renata Prunskaite-Hyyryläinen
  • Ilkka Pietilä
  • Raija Sormunen
  • Tiina Jokela
  • Jingdong Shan
  • Seppo J Vainio
چکیده

Germ cells are the foundation of an individual, since they generate the gametes and provide the unique genome established through meiosis. The sex-specific fate of the germline in mammals is thought to be controlled by somatic signals, which are still poorly characterized. We demonstrate here that somatic Wnt signalling is crucial for the control of female germline development. Wnt-4 maintains germ cell cysts and early follicular gene expression and provides a female pattern of E-cadherin and beta-catenin expression within the germ cells. In addition, we find that Stra8 expression is downregulated and the Cyp26b1 gene is expressed ectopically in the partially masculinized Wnt-4-deficient ovary. Wnt-4 may control meiosis via these proteins since the Cyp26b1 enzyme is known to degrade retinoic acid (RA) and inhibit meiosis in the male embryo, and Stra8 induces meiosis in the female through RA. Reintroduction of a Wnt-4 signal to the partially masculinized embryonic ovary, in fact, rescues the female property to a certain degree, as seen by inhibition of Cyp26b1 and induction of Irx3 gene expression. Wnt-4 deficiency allows only 20% of the germ cells to initiate meiosis in the ovary, whereas meiosis is inhibited completely in the Wnt-4/Wnt-5a double mutant. These findings indicate a critical role for Wnt signalling in meiosis. Thus, the Wnt signals are important somatic cell signals that coordinate presumptive female follicle development.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

FMRP Associates with Cytoplasmic Granules at the Onset of Meiosis in the Human Oocyte

Germ cell development and primordial follicle formation during fetal life is critical in establishing the pool of oocytes that subsequently determines the reproductive lifespan of women. Fragile X-associated primary ovarian insufficiency (FXPOI) is caused by inheritance of the FMR1 premutation allele and approximately 20% of women with the premutation allele develop ovarian dysfunction and prem...

متن کامل

Transcriptome Analysis on Single Small Yellow Follicles Reveals That Wnt4 Is Involved in Chicken Follicle Selection

Ovarian follicle selection is an important process impacting the laying performance and fecundity of hens, and is regulated by follicle-stimulating hormone (FSH) through binding to its receptor [follicle-stimulating hormone receptor (FSHR)]. In laying hens, the small yellow follicle (6-8 mm in diameter) with the highest expression of FSHR will be recruited into the preovulatory hierarchy during...

متن کامل

WNT4/β-Catenin Pathway Maintains Female Germ Cell Survival by Inhibiting Activin βB in the Mouse Fetal Ovary

Female germ cells are essential for organogenesis of the ovary; without them, ovarian follicles do not form and functional and structural characteristics of the ovary are lost. We and others showed previously that when either Wnt4 or beta-catenin was inactivated in the fetal ovary, female germ cells underwent degeneration. In this study, we set out to understand whether these two factors belong...

متن کامل

Wnt4 affects morphogenesis when misexpressed in the zebrafish embryo

The Wnts are a family of secreted glycoproteins involved in cell-cell signalling and pattern formation during development, although the extent to which various Wnts are functionally equivalent remains unclear. We have cloned zebrafish (Danio rerio) wnt4, characterized its expression, and compared its activity relative to other Wnts. The wnt4 transcript is first detected early in somitogenesis, ...

متن کامل

From Sex Determination to Initial Folliculogenesis in Mammalian Ovaries: Morphogenetic Waves along the Anteroposterior and Dorsoventral Axes.

Gonadal sex in most mammals is determined based on sex differentiation of the supporting cell lineages. In mouse XY gonads, SRY induces SOX9 upregulation and subsequent FGF9 expression by embryonic day 11.5 (E11.5), leading to the differentiation of Sertoli cells. XX gonads, lacking SRY action, start on the ovarian program through the actions of WNT4 and FOXL2 from around E11.5-12.0. These 2 ov...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Human molecular genetics

دوره 19 8  شماره 

صفحات  -

تاریخ انتشار 2010